
                                                              CHAPTER ONE
1.0                                                        INTRODUCTION
[bookmark: _GoBack]Soil as a natural body is inherently heterogeneous because of the main factors that contribute to soil formation and the complex interactions between these factors. The spatial variability of soil properties occurs naturally from pedogenic factors resulting from complex interactions between geology, topography, climate as well as soil use (Quine and Zhang, 2002). On the other hand, spatial variability of the soil can occur as a result of land use and management strategies. As a consequence, soils can exhibit marked spatial variability at both macro- and micro-scale (Vieira and Paz Gonzalez, 2003; Brejda et al., 2000). In many instances, spatial variation is not random but tends to follow a pattern in which variability decreases as distance diminishes between points in space (Warrick and Nielsen, 1980). 
In conventional agriculture, the uniform management of crops grown under spatially variable conditions has resulted in less than optimum yields due to nutrient deficiencies as well as excessive fertilizer application that have negatively impacted the environment (Redulla et al., 1996). Today, the knowledge on the variability of soil properties has been considered as a basic principle for site-specific management in precision agriculture for areas at any scale (Grego and Vieira, 2005). According to Montezano et al. (2006), characterizing the spatial variability of the soil chemical properties, particularly in cultivated areas, provides relevant information for a more rational soil use and management. Such studies gain particular importance in the case of mapping changes caused by different management methods (Carvalho et al., 1998; 2002). In such cases, characterizing the spatial variation of soil properties makes it possible to define differentiated management areas, which may increase the efficiency of fertilizer use and sampling schemes. 
The demand for more accurate information on spatial distribution of soil properties have increased with the inclusion of the spatial dependence and scale in ecological models and environmental management systems. This is because the variation at some scales may be much greater than at others (Yemefack et al., 2005). In this context, classical descriptive statistics and geostatistics have been used as an important and efficient strategic tool to characterize spatial variability of soil properties (Grego and Vieira, 2005; Silva et al., 2007). 
Spatial variability of soils has been assessed using descriptive statistics such as range, mean, maximum, minimum skewness, kurtosis, and coefficient variation (Delhomme, 1979).  Geostatistics on the other hand provides a set of statistical tools for incorporating spatial coordinates of soil observation in data processing. This allows modeling of spatial patterns, prediction in un-sampled locations, and assessment of the uncertainty attach to these predictions (Francisca et al., 2002). Geostatistical analysis involves incorporation of functions that relate distance and variance among points (e.g. semivariograms, kriging) into spatial analysis of soils data results in more accurate estimates of soil properties and processes than those that consider only spatial independence between points (Warrick and Nielsen, 1980). Semivariograms for soil properties can be used to reduce the need for expensive and intensive sampling, as in the case of precision agriculture (McBratney and Pringle, 1999). Kriging has been used for many decades as synonym for geostatistical interpolation and has been proved as sufficiently robust for estimating values at unsampled locations based on the sampled data (Nilesen and Wendroth, 2003). Spatial dependence has been observed for a wide range of soil physical, chemical, and biological properties and processes (Lyons et al., 1998; Raun et al., 1998). Soil nutrient variability mapping has been reported as an important component for establishing management zones (Castrignano et al., 2000). Haneklause et al. (1998) also suggested that correctly mapping soil fertility parameters is important for variable rate application. 



	
1.1   PROBLEM STATEMENT
 There was observed variability in plants growth on the SIWES Training Farm. This could be attributed to spatial variability of soil fertility attributed to variability in soil inherent properties and indiscriminate management such as fertilizer application and excessive tillage practices could lead to problem of negatively impacting the soil structure at different scales. This will definitely cause variable yield across the field, cause overall reduction in potential yield and negatively influence the environment.
  1.2                JUSTIFICATION
Precise information about the spatial variability of soil chemical properties is essential in developing site-specific soil management such as variable rate application of fertilizers. Therefore, the study of spatial variability of soil chemical property in a given area and within the soil becomes of utmost importance on how soil and variation in its properties could be managed (Cambardella, 1999).
   1.3              OBJECTIVES
The main objective is to examine the spatial variability of soil properties and relationship with crop yield in SIWES Training Farm, Ado-Ekiti.



1.3.1           SPECIFIC OBJECTIVES
1. To evaluate the spatial variability of some soil chemical properties using classical and geostatistical approaches.
2. To map the selected soil chemical properties which will be helpful to farmers and soil management experts to design land management and soil water conservation.


                              



  




                                                     CHAPTER TWO
2.0                                           LITERATURE REVIEW
2.1 Definition of Soil
Soil is a mixture of minerals, organic matter, gases, liquids and countless organisms that together support life on earth. Soil is a natural body called the pedosphere which has four important functions. It is a medium for plant growth; it is a means of water storage, supply and purification, it is a modifier of earth’s atmosphere, it is a habitat for organism; all of which, in turn, modify the soil. Soil is called the skin of the earth (Miller, 1953) and the interfaces with the lithosphere, the hydrosphere, atmosphere, and the biosphere (Chatsworth, 2008)
Soil is called the Skin of the Earth and interfaces with the lithosphere, the hydrosphere, the atmosphere, and the biosphere (Chesworth, 2008). The term pedolith, used commonly to refer to the soil, literally translates ground stone. Soil consists of a solid phase of minerals (the soil matrix) and organic matter, as well as a porous phase that holds gases (the soil atmosphere) and water (the soil solution) (Voroney et al., 2015). Accordingly, soils are often treated as a three-state system of solids, liquids, and gases (McCarthy, 2016).
Soil is a product of the influence of climate, relief (elevation, orientation, and slope of terrain), organisms, and its parent materials (original minerals) interacting over time. Soil continually undergoes development by way of numerous physical, chemical and biological processes, which include weathering with associated erosion. Given its complexity and strong internal connectedness soil has been considered as an ecosystem by soil ecologists (Ponge, 2015).
2.2 Importance of Soil
Soil acts as an engineering medium, a habitat for soil organisms, a recycling system for nutrients and organic wastes, a regulator of water quality, a modifier of atmospheric composition, a medium for plant growth, making it a critically important provider of ecosystem services (Dominati et al., 2010). Since soil has a tremendous range of available niches and habitats, it contains most of the earth’s genetic diversity. A gram of soil can contain billions of organisms, belonging to thousands of species, mostly, microbial and in the main still unexplored (Dykhuizen et al., 1998). Organic carbon held in soil is eventually returned to the atmosphere through the process of respiration carried out by heterotrophic organisms, but, a substantial part is retained in the soil in the form of organic matter; tillage usually increase the rate of respiration, leading to the depletion of soil organic matter (Schlesinger et al., 2000). Since plant root need oxygen, ventilation is an important characteristic of soil. This ventilation can be accomplished via networks of interconnected soil pores, which also absorb and hold rain water, making it readily available for plant uptake. Some plants require a nearly continuous supply of water, but, most region receive spodic rainfall, the water holding capacity of soils is vital for plant survival (Denmead et al., 1962). Soil can effectively remove impurities (House et al., 1999), kill disease agents (Van et al., 2000) and degrade contaminants, this latter property being called natural attenuation. Typically, soils maintain a net absorption of oxygen and methane, and undergo a net release of carbon dioxide and nitrous oxide (Linn et al., 1994). 
Soils offer plants physical support, air, water, temperature moderation nutrients and protect from toxins (Miller et al., 1990). Soil provides readily available nutrients to plants and animals by converting dead organic matter into various forms (Boet et al., 2005). 
2.3 Soil Chemical Properties
Chemical properties of soil are the nutrient present in the soil. The chemical properties are as follows; pH, electrical conductivity (EC), organic carbon (OC), available phosphorus (AP). Soil pH is a measure of hydrogen ion concentration in an aqueous solution and it range in soils from 3.5 (very acidic) to 9.5 (very alkaline). It also affects the quantity, activity and types of microorganism in turn influence decomposition of crop, residues, manures sludge’s and other organics (Shickluna, 1977). Soil organic carbon can be oxidized by combustion and returned to the atmosphere as carbon dioxide. Soil organic carbon improves the physical properties of the soil. It buffers soil from strong changes in pH (Shickluna, 1977). Plant uses as either the ammonium (NH4+) or the anion nitrate (NO3-) (Roy, 2006). Available phosphorus is an essential element classified as macro-nutrients because of the relatively large amount of phorus required (Miller, 1977).  Electrical conductivity is the potential problem in irrigated soil due to high evaporation rates and low annual rainfall leaving salts to accumulate. Salts can come from irrigation water, fertilizer, compost, and manure. Salts can be leached by slowly applying excess water.                              
2.4 Definition of Spatial Variability
Spatial variability occurs when a quantity that is measured at different locations exhibits values that differ across the locations. Natural soil spatial variation occurs primarily from pedogenetic factors (Trangmar et al., 1985). In addition, variation can occur as a result of land use and management (Paz-Gonza´lez et al., 2000; Stenger et al., 2002). As a consequence, soils usually exhibit marked spatial variation on macro (White et al., 1997) and micro scales (Yang et al., 2001). In many instances, spatial variation is not random but tends to decrease as distances diminish between points in space (Goovaerts, 1998; Webster, 2000). Spatial dependence has been observed for a wide range of soil chemical properties (Boyer et al., 1996; Bragato and Primavera, 1998), but typically the size of the studied area is relatively small, commonly ranging from 1m2 to 1ha. Spatial variability can be assessed using classical statistics such as coefficient of variation (CV), kurtosis and skewness (Isaaks, 1989). Spatial variability of soil properties and crop yield has been one of the major objectives in investigations related to agricultural sciences. 
2.5 Factors Causing Spatial Variability of Soil Properties
Spatial variability could be induced even in a uniform field by erosion, bush burning and run off deposition. Soil depth could also be a factor in soil spatial variability. Although climate and geological history are considered to be prime factors affecting the variability of soil chemical properties on regional and continental scales (Wandorf et al., 2010) however, land use is one of the dominant factors influencing soil chemical properties at different scales, with changes in land use posing more significant effect on soil chemical properties and processes. As a result, such changes modify the processes of transport and distribution of water and nutrients in the soil matrix. For instance, in a land under fallow, the type of vegetal cover is a factor influencing the soil (Ersahin, 2003).
2.6   Geostatistical Analysis 
Geostatistics can be defined as the branch of statistical sciences that studies spatial/temporal phenomena and capitalizes on spatial relationships to model possible values of variable(s) at unobserved, unsampled locations (Caers, 2005). According to Deutsch (2002), geostatistics is the study of phenomena that vary in space and/or time. In another vein, geostatistics is regarded as a collection of numerical techniques that deal with the characterization of spatial attributes, employing primarily random models in a manner similar to the way in which time series analysis characterizes temporal data (Olea, 1999). Geostatistics offers a way of describing the spatial continuity of natural phenomena and provides adaptations of classical regression techniques to take advantage of this continuity (Isaaks and Srivastava, 1989). Geostatistics deals with spatially autocorrelated data. 
Geostatistical is based on the science of regional variables. Regional variables are variables which are random in space, that is, values of property at different locations are repeated trials and values are characterized by a probability distribution. Semivariogram and kriging techniques are used to analyze the spatial variability of soil properties on the field scale.
2.6.1 Semi-variograms
Semi-variograms are used to measure the spatial correlation structure. Values are generally highly irregular and not accurately described by deterministic equations. Values at locations separated by greater distances often manifest somewhat more deterministic trends, but an accurate description is usually impossible owing to the nature of the variability. Nugget variance is associated with spatially dependent variation occurring over smaller distances than the smallest sampling interval and with measurement errors. Sampling at smaller intervals is the only means of estimating the shape of the curve near the origin, measurement errors will still contribute to the nugget variance. Range is the maximum distance over which pairs of observations remain correlated. The sill is the maximum value obtained for a transitional or bounded semivariogram. The structure of a semivariogram is the shape and nature of the curve for values greater than the nugget variance. The relationship between semi-variance and distance between the samples pairs is given by:
	
where
,  = values of a random variable  and  respectively,
 = number of sample pairs separated by h,
 = distance between samples values (lag), and
 = estimated values of the semi-variance for lag h
If the semi-variogram changes with direction, the spatial variation is said to be anisotropic and a transformation is required before the semi-variogram can be used for kriging. Various variogram model functions are available in the literature to represent the structure of a set of data (Isaaks et al., 1989). The most common models are linear, spherical, Gaussian, and exponential. 
2.6.2 Kriging
Kriging in geostatistics is a useful algorithm for estimating and mapping soil properties at unobserved sites in the agricultural fields with reasonable accuracy from easily measured soil variables. In this context, several studies have employed geostatistical techniques to verify that soil properties vary across farm field as well as using the techniques to estimate attributes in unsampled locations (Ershain et al., 2003). 
Kriging is a statistical procedure for interpolating values at unsampled locations between locations with measured values. It is one of many procedures available to estimate unknown values. Interpolations are usually made deterministically or stochastically. Deterministic interpolations involve drawing lines, polygons or polynomials through measured values and assigning values to unmeasured locations (Donald et al., 1999). The relationship between semi-variance and distance between the samples pairs is given by: 
          Z* (xo
where:
n = number of locations where measurements are made,
Z(xi) = measurements selected in the xo neighborhood for performing the estimation of Z*(xo),
Z*( xo = kriging estimate at location x0 , and
Wi = weight associated with the distance between x0 and xi   
Wei et al. (2009) studied the spatial variability of soil chemical properties in the reclaiming marine foreland to yellow sea of china. The authors found strong spatial variability for magnesium and boron while other chemical properties showed moderate spatial variability. The maximum ranges for K, Ca, Mg, S, Cu and Mn were all ~ 3 990.6 m and the minimum ranges for soil pH, OM, NH4 +, P, Fe, and Zn ranged from 516.7 to 1 166.2 m. Clear patchy distribution of N, P, K, Mg, S, B, Mn, and Zn were found from their spatial distribution maps. This proved that sampling strategy for estimating variability should be adapted to the different soil chemical properties and field management. The authors concluded that the spatial variability of soil chemical properties with strong spatial dependence could be readily managed and a site-specific fertilization scheme for precision farming could be easily developed.
In a study on spatial variability of soil chemical properties of a prairie- forest transition in Louisiana by Bekele and Hudnall (2006), the geostatistical analysis showed that spatial dependence was expressed over a range of 20-30 m for most of the soil attributes considered. Semivariogram shapes were similar among sites, suggesting the greater control of soil parent material on the observed spatial soil pattern. Shorter range of variation emerged only for soil pH when soil data from the forest and transition were deleted, indicating the scaling characteristics of soil pH and its susceptibility to plant induced changes. There was spatial dependence over a range of 20-30m for most of the soil attributes considered. The authors concluded that soil pH can be used as a soil monitoring index.
Yanai et al. (2000) studied the spatial variability of soil chemical properties in a paddy field. The authors investigate spatial variability of soil chemical properties. Geostatistical analysis was carried out examining within-field spatial variability using semivariograms and kriged maps as well as descriptive statistics which showed that coefficient of variation for the EC, total N, available P, exchangeable K, Na, mineralizable N, and inorganic N exceeded 10%, suggesting a relatively high variability. The geostatistical analysis indicated a high spatial dependence for all the properties except pH and inorganic N content. The authors concluded that rational sampling interval was evaluated at 20-50 m depending on the soil properties, and the need for site-specific soil management and possibility of precision agriculture were demonstrated even in an almost flat paddy field.
Ikemefuna (2013) studied and evaluated the spatial variability of soils of similar lithology under different land uses and degradation risks in a Guinea savannah Agro- ecology of Nigeria. The study evaluated the spatial pattern of soil properties under different land use types and their degradation. The author concluded that spatial pattern of the considered soil properties would change significantly with land use changes currently being implemented to achieve sustainable Agriculture. Taking land use into account when considering the spatial variation of the soil properties would increase the accuracy in prediction of soil nutrient status and nutrient vulnerability in the Guinea Savannah agro-ecology of Nigeria.
Law et al. (2009) investigated the spatial variability of soil organic carbon (SOC) in different operational areas (weeded circle, frond heap and harvesting path) of an oil palm field in Malaysia. There was spatial variability of SOC across the different operational areas. The variability of SOC was defined by moderate to strong spatial dependence while it was well fitted to either spherical or exponential model. The contour maps showed spatial clusters of SOC values. The authors opined that site-specific management could be considered as a strategy to increase SOC sequestration in oil palm.
Usowicz and Lipiec (2017) studies the spatial variability of soil properties and cereal yield in a cultivated field on sandy soil in Poland and found that the spatial dependence determined by the “nugget-to-sill” ratio was moderate or weak for the silt and clay content, CEC, and pH (29–79%) and strong for SOC, BD, SWC, and crop yield (0.2–13.2%). The effective range of the spatial dependence for all studied quantities varied from 9.9 to 120 m. The cereal yields were positively and significantly correlated between all study years (r =0.141–0.734), which indicates inter-annual similarity in their spatial distribution. The 2D maps based on the inverse distance weighing (IDW) allowed assessing how gradual or sharp the changes in the studied quantities from one place to another are. Similar spatial patterns of the SWC, SOC and CEC, and crop yields were observed. This is of importance in precise and sustainable field management aimed at increasing and aligning spatial crop productivity of the studied low-productivity sandy soils that will have to be used in crop production due to the current shortage of land resources and food supplies on a global scale. 
Despite this quantum of studies, little is known about the extent of spatial variability of soil chemical properties across the various Units of Teaching and Research Farm, Ekiti State University, Ado Ekiti, Ekiti State.
                                           
CHAPTER THREE
3.0                                   MATERIALS AND METHODS
3.1 Description of Study Location
The study was conducted at the SIWES Training Farm, Irasa, Ekiti State University, Ado-Ekiti. The study site lies on latitude 7’ 41’N and longitude 5o 15’E with an altitude of about 406 m above the mean sea level. The land in the time past has been used for the cultivation of yam and cowpea and was left fallow for about 3 years before the SIWES students started cultivating on it for cowpea, sole-maize and maize/cassava inter-crop.
3.2 Field Procedure
The field was about 2.6 ha, 1.0 ha was planted to cowpea, 1.0 ha to sole-maize and 0.6 ha to maize/cassava inter-crop. Grids of 10 m x 10 m were set up on the field within the three land uses with ninety-four (94) grids set up in cowpea plot, fifty (50) grids in sole maize and forty (40) grids in maize/cassava intercrop, giving a total of one hundred and eighty-four (184) grids (Figure 1).The center of each grid was geo-referenced with the aid of GPS (Garmin model) for soil sampling.
3.3 Soil Sampling and Sample Preparation
Disturbed soil samples were collected from 0-20 cm surface layer at the centre of each grid. A total of one hundred and eighty-four (184) samples were collected altogether. The samples collected were neatly packed and transferred to the laboratory for analysis.  The disturbed soil samples were air-dried, crushed and sieved to remove materials larger than 2 mm with the aid of 2-mm sieve. 


[image: ]Figure 1. (a) map of Nigeria showing (b) Ekiti State and (c) the sampling points

3.4.1 Soil pH
Soil pH was determined in a 1:1 soil water suspension (Sparks, 1996). 10g of soil sample was weighted into a plastic cup, then, 10ml of water was added to the soil sample, after which it was stirred together with stirring rod, after which, it was allowed to stand for 30 minutes before taking the readings. The readings were taken using Jenway pH meter by the glass electrode.
3.4.2 Electrical Conductivity
10g of soil sample was weighed into a plastic cup. 10ml of water was added into the soil sample, after which it was stirred together with a stirring rod. It was then allowed to stand for 30 minutes before the readings were taken. Electrical conductivity (EC) was measured using Jenway conductivity meter with glass electrode in a 1:1 soil water suspension (Rhodes, 1982). 
3.4.3 Organic matter content
0.25 g of soil sample was weighed into 500 ml Erlenmeyer flasks. 10ml of 1N K2Cr2O7 was as a result of pipetting added and swirl to mix, 20 ml of concentrated Hydrogen sulphate was added and swirl gently for 1minute, after which, it was allowed to stand for 30minutes. The suspension was diluted with 100ml of distilled water, 10 ml of 85% H3PO4 was added, about 0.2 g of NaF was added with measuring spoon, and 1 ml of diphenylamine indicator was added, Cr2O7 was back titrated with 0.5 N ferrous solution until the end point of the solution turns green. Organic carbon (OC) was determined by Walkley-Black dichromate wet oxidation method (Nelson, 1982). 
3.4.4 Available phosphorus
2.0 g of soil sample was weighed into flask, 20 ml of extraction reagent was added and shaken for 5 minutes on a shaker, after which it was filtered using Whatmann No2 filter paper, limiting the filtration time to 10minutes. 2.0 ml of the extraction was transferred into a spectrophotometer tube, 8ml of working solution was added and was thoroughly mixed. After 10 minutes, the percentage of transmittance was measured at 882 nm. Jenway spectrophotometer was used to determine the available phosphorus in the soil. The content of available phosphorus were determined by (Bray et al., 1954)
3.5 Data Analysis
3.5.1 Descriptive Statistics of Soil Chemical Properties
Data were subjected to descriptive statistics of minimum, maximum, average, standard deviation (SD), skewness, kurtosis and coefficient of variation (CV) of data on soil pH, electrical conductivity, available phosphorus, organic carbon. According to the classification proposed by (Warrick and Nielsen, 1980), a parameter is considered to have low variability if the CV<12% as moderate variability when 12% <CV<60% and high variability when CV>60%. In addition, the frequency distribution graph was plotted for each variable. All classical analyses were carried out using SPSS (IBM Version 20.00).
3.5.2 Geostatistical Analysis	
Geostatistical analysis was done using the GS+ (Gamma Design Software, Version 5.2, 2005) to determine the spatial dependency and estimation of the soil chemical properties evaluated. Isotropic, exponential and Gaussian, were tested from omni-directional semi variance, , of a set of spatial observations Yx1, expressed as, (Nielsen and Wendroth, 2003).
					  
	     				
Where  is the covariance;  is the spatial separation distance known as the lag;  is the number of pairs of observation separated by a distance:  is soil variable observed at point  while  is soil variable observed at point .
To characterize the spatial covariance structure of the variables, the best model was selected based on the coefficient of determination, R2. From the models, basic spatial parameters such as nugget (Co), sill (C+Co) and range AO were determined. Different classes of spatial dependence of the soil properties were computed using nugget to sill ratio (Co/(C+Co) as proposed by Cambardella (1994). For the ratio <25%, the soil öproperty is considered to be strongly spatially dependent (SSD); for ratio between 26 and 75%, the soil property is said to be moderately spatially dependent (MSD) while for ratio>75%, the soil chemical is considered to be weakly spatially dependent (WSD). After selecting the best fit semivariogram model for each variable, contour maps were created through ordinary kriging of the Geostatistical Analyst extension in Arc GIS v.10.1® (Esri.Redland,CA. USA). 
                                        
                                                 








CHAPTER FOUR
4.0                                 RESULTS AND DISCUSSION
4.1 Descriptive statistics of the soil chemical properties
The summary of the descriptive statistics (number of samples, minimum and maximum values, mean, standard deviation, coefficient of variation, skewness and kurtosis) of the studied soil chemical properties are given in Table 1. The number of samples tested for all the parameters were 184 for pH, Soil organic matter (SOM) and Electrical conductivity (EC), except for the Available Phosphorus (Av. P) which had 92 samples (Table 1).
 All measured parameters varied considerably within the study area (different cropping zones) as indicated by the coefficient of variation (CV) which varied widely from 0.079 to 0.993 (Table 1). EC, Av. P and SOM showed high variability (CV ˃ 0.6) within the study area, with the variability of EC being the highest, only pH has the low variability (CV ˂ 0.12) according to the guideline provided by Warrick (1998). This corroborates with the findings of Parfitt et al. (2009) and Ferreira et al. (2015) who also reported varied soil parameters within their study area. High variability of a soil parameter may be attributed to a lack of homogenous fertilization for chemical parameters or tillage practices for parameter such as SOM in a cropping area. This ultimately leads to heterogeneity of the soil parameter of the area.

















Table 1. Descriptive statistics of some soil chemical properties of the SIWES Training Farm.
	Property
	N
	Min.
	Max.
	Mean
	SD
	CV
	Skewness
	Kurtosis

	Ph
	184
	5.01
	7.88
	6.17±0.036
	0.49
	0.079
	0.14±0.18
	0.92±0.36

	EC
	184
	0.02
	8.65
	1.17±0.085
	1.16
	0.993
	2.82±0.18
	11.96±0.36

	SOM
	184
	0.70
	6.80
	6.54±0.347
	4.71
	0.721
	1.95±0.18
	4.50±0.36

	Av. P
	92
	0.52
	39.58
	11.71±0.926
	8.88
	0.758
	0.81±0.25
	0.13±0.50


EC: electrical conductivity, dS/m; SOM: soil organic matter, %; Av. P: available phosphorus, ppm; N: 
number of samples; Min.: minimum value; Max.: maximum value; SD: standard deviation; CV: coefficient of variation. Values after the ± sign are the standard error of the statistical parameter in the respective column.






The pH of the soil ranged from 5.013 to 7.88 with the mean of 6.17±0.036. Soil pH affects nutrient availability by changing the form of the nutrient in the soil. Plants usually grow well at pH values above 5.5.  Soil pH of 6.5 is usually considered optimum for nutrient availability. Extreme pH values decrease the availability of most nutrients while low pH reduces the availability of the macro- and secondary nutrients. High pH could reduce the availability of most micronutrients while microbial activity may also be reduced or changed. In addition, lower pH increases the solubility of Al, Mn, and Fe, which are toxic to plants in excess. 
The mean for EC varied from 0.023 to 8.65 dS/m and mean given as 1.17±0.085 dS/m. This soil can be classified as low (EC ˂ 2.0) salinity soil, although small patches of the field are saline, however this soil does not pose a salinity problem. Usually, addition of fertilizer including amendments can result in high EC, due to a relative amount of the salts which are leached by irrigation water. Management history of this soil showed that irrigation has not been practiced and also, fertilization has not been consistent enough to raise salinity above normal.  SOM ranged from 0.07 to 6.80 % with a mean value of 6.54±0.347%. Based on the result of this study, the field can be classified as being low in organic matter (SOM ˂ 15%). Other studies suggest that low SOM may be due to tillage practices (Celik, 2005). For available Phosphorus, the values in the study area varied from 0.52 to 39.58 ppm, with a mean of 11.71±0.926 ppm. This indicates that the soil of the study area can be classified as having moderate level of available Phosphorus for the cultivated crops.
The standard deviation values for the tested parameters varied from 0.49 to 8.88 (Table 1). It indicates that only the mean value obtained for the pH is representative of the studied parameter (SD value significantly lower than mean value), however, EC, SOM and available phosphorus mean values are not representative (SD values closer to the mean values).
The range of the value of coefficients of skewness varied from 0.14 to 2.82 (Table 1), indicating that some soil chemical properties such as pH and available Phosphorus values are normally distributed (Fig. 2(a) and (d)), while EC and SOM were not normally distributed because of some local distribution with some values far higher than the rest (Fig. 2(b) and (c). When a parameter has local distribution, it follows that high values were found for these elements at some points, but most values were low (Gregor et al., 2006). The main reason for some soil properties not having normal distribution may be due to soil management practices (Tesfahuneg et al., 2011), where necessary, data were transformed to a normal distribution.
The same tendency in skewness was observed for the coefficient of kurtosis (Table 1) and it can be concluded in this study that the data distribution for pH and available phosphorus tends to be normal but EC and SOM tends to lognormal (Figure 2).
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Fig 2. Frequency and normal distribution curve of some soil chemical properties of the SIWES Training Farm.





The mathematical models (theoretical semivariograms) adjusted to the experimental semivariograms, as well as the Co parameter (nugget effect), Co + C (sill), Ao (range), Co/Co + C (spatial dependence), and R2 (coefficient of determination) related to the adjusted process are shown in Table 2 (Geostatistics). 
Nugget (Co) which is an indication of micro-variability was low for pH (0.195) and SOM (0.89%), high for available phosphorus (58.7 ppm) and extremely high for EC (4390 dS/m) as shown in Table 2. The close to zero nugget from pH and SOM is an indication of very smooth spatial continuity between neighbouring points. On the other hand, the highest nugget effect found in EC compared to other variables indicates high discontinuity among samples. Vieira (2000) stated that the higher the nugget effect, the greater the discontinuity in samples. With increase in separation distance (h), the semivariance increases to a more or less constant value, which is known as the sill or total semivariance. In this study, the sill values ranged from 0.181 (pH) and 14650(dS/m)2 (EC).  The range of spatial dependencies varied between 74 and 511 m, indicating that the optimum sampling interval varies greatly among the different soil properties (Jabro et al., 2006). The SOM that showed small range (74 m) of spatial dependence indicates that spatial continuity could diminish rapidly over a relative short distance. This result corroborates the findings of Ferreira et al. (2015) who also reported variability in spatial distribution range of tested soil parameters. 

















Table 2. Fitted models and estimated parameters of the experimental semivariograms of soil chemical properties of the SIWES Training Farm.
	Prop.
	Model
	Co
	Co+C
	Ao
	Co/(Co+C
	Spatial dependence
	R2
	MAE
	MSE

	Ph
	Exp.
	0.195
	0.394
	510.9
	0.495
	MSD
	0.100
	0.026
	0.013

	EC
	Exp.
	4390
	14650
	36.6
	0.300
	MSD
	0.444
	0.043
	0.018

	SOM
	Sph.
	0.181
	0.89
	74.2
	0.203
	SSD
	0.080
	0.064
	0.002

	Av. P
	Sph.
	58.7
	117.41
	511.0
	0.500
	MSD
	0.255
	0.012
	0.001


Prop.: soil property; EC: electrical conductivity, dS/m; SOM: soil organic matter, %; Av. P: available phosphorus, ppm. Co: nugget effect; Co+C: sill; Ao: spatial range, m; SSD: strong spatial dependence; MSD: moderate spatial dependence. R2: coefficient of determination; MAE: mean absolute error; MSE: mean square error.






The nugget to sill ratio is used to define the degree of spatial dependence of soil properties. If the ratio is ˂ 0.25, there is strong spatial dependence; if it is 0.25 to 0.75, there is moderate spatial dependence; and if the ratio is ˃ 0.75, the spatial dependence is weak (Cambardella et al., 1994). The ratio values (Table 2) indicate that pH, EC and Av. P showed moderate spatial dependence while SOM had strong spatial dependence. The moderate spatial dependence indicates that the chosen sampling distance of 10 m × 10 m of this study moderately characterized the spatial variation of each of the parameters. On the other hand, the strong spatial dependence observed for SOM that showed showed the influence of soil composition characteristics, such as original material, climate, organism or time (Parfitt et al., 2009). Ferreira et al. (2015) attributed possible cause of strong spatial distribution of a soil parameter to non-existence of extrinsic factors, such as management cultivation practices, that influences soil properties and when left undisturbed. Based on the range values and spatial dependence status of the tested soil parameters, it can be emphasized that choosing sampling distance of 10 m × 10 m characterized the spatial variation of soil parameter and the sampling distance adequately capture the variation.
The experimental semivariograms which describe the structure of spatial variability of the studied soil chemical properties, were best fitted to exponential model for pH and EC, and the spherical model for SOM and available phosphorus. These models are depicted in Figure 3.
The coefficient of determination (R2) for the adjusted theoretical semivariogram as given in Table2 varied from 0.080 to 0.444 which is ˂ 0.5. This is in agreement with the findings of Parfitt et al. (2009) who also reported R2 ˂ 0.5 for the tested soil parameters. This result indicates average quality of theoretical model fitting to the empirical values of the semivariogram.
Test of validation was checked with the MAE and MSE (Table 2). Low values observed indicate that kriging predictions of the studied soil chemical properties are equally accurate. 





[image: ]Figure 3. The semivariogram of the a) pH, b) soil organic matter , c) electrical conductivity , and d) available phosphorus  of the field.







4.3 Spatial distribution of the studied soil chemical parameters
The interpolation maps obtained with geostatistical analysis are essential for better understanding of spatial variability and have influence on soil management and land use. Figures 4-7 show the digital maps obtained by kriging techniques for soil properties. The comparison of these maps is useful in the interpretation of results. The map indicates a high variability in the distribution of pH across the different cropping zones (cowpea, sole maize, maize/cassava intercrop), indicating that the pH contents in this study area is highly heterogeneous. According to this map, the pH range of strongly acidic to slightly alkaline are present in the soil (Figure 4). In all, this soil can be classified as slightly acidic. 
 [image: ]Figure 4. Kriged contour map showing the spatial variability and classification of soil pH of the field.
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Figure 5. Kriged contour map showing the spatial variability and classification of soil organic matter (SOM) of the field.
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Figure 6. Kriged contour map showing the spatial variability and classification of electrical conductivity (EC) of the field.
[image: ]
Figure 7. Kriged contour map showing the spatial variability and classification available P (Av. P) of the field.
The SOM of the field is classified as low and has the highest homogeneity across the 3 cropping zones with a minor variable distribution (Figure 5). According to Figure 6, EC content is classified low with variable distribution around the study area and showed homogeneity around the cowpea and cassava/maize cropping zones. The Av. P content is moderate for the cultivated crops in the study area with variable distribution around the different cropping zones (Fig. 7). Visual inspection of distribution maps of soil parameters such as pH and Av. P with distribution map of SOM and EC shows that they are not very identical. High heterogeneity of properties occurred in the former while the latter is close to being totally homogeneous in the study area indicating that soil parameter distributions within the field may be influenced by erratic fertilizing management and heterogeneous management practices on the soil. In addition, spatial variability in certain soil parameters can have influence on the spatial distribution of crop productivity potential as initially observed for crops grown in the study area. The spatial distribution maps are consistence with other studies (e.g. Yanai et al., 2000; Law et al., 2009; Wei et al., 2009; Usowicz and Lipiec, 2017) that had reported the spatial variability of soil chemical properties across cultivated field. Therefore, the quantitative and visual information obtained from these maps could be used to facilitate site specific management in the study area.

CHAPTER FIVE
5.0                 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions
The spatial variability of some soil chemical properties of SIWES Training Farm, Ekiti State University, Ado –Ekiti, Ekiti State was studied. 
All measured soil chemical parameters varied considerably within the study area (different cropping zones) and the field is slightly acidic to slightly alkaline and generally low in SOM and Av. P, with no salinity problem. 
High magnitude of variability was observed for EC, Av. P and SOM while pH had the least magnitude. 
The soil chemical properties showed moderate to strong spatial dependence.
 The geospatial maps clearly revealed that the heterogeneity of the soil chemical properties across the field. 
Both classical statistics and geostatistical analyses of the soil of the area provided a better understanding of the spatial variability of soil chemical properties and the influence such could have on crop performance. 

5.2	Recommendations
The results indicated that the soil pH is slightly acidic and contained low amounts of both SOM and available phosphorus. It is recommended that, planting of arable and cover crops, minimum tillage, liming of the soil and controlled application of phosphate fertilizer should be done so as to increase the soil organic matter, improve the available phosphorus and maintain the soil pH. 
Further studies should be conducted to include other soil chemical properties such that robust site-specific management programme could be effected.
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